lunes, 31 de enero de 2011

5.4 Interacción electrostática. Ley de Coulomb.


Equipo
Cuestión
Respuesta
1
¿Que tipo de cargas eléctricas existen?
Positivas y Negativas.
2
¿¿Qué signos tienen las cargas eléctricas?
Positivos y negativos.
3
¿Que le ocurren a las cargas eléctricas del mismo tipo?
Se repelen
4
¿Qué le ocurren a las cargas de diferente tipo?
Se atraen.
5
¿Cuál es la relación de las cargas Fuerza distancia para cargas iguales?
La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.
6
¿Cual es la relación de las cargas Fuerza distancia para cargas diferentes?
En este caso las cargas se atraen por la diferencia de carga



Interacción electrostática

Material: Dos globos, hilo, varilla de vidrio, varilla de plástico.
Procedimiento:
-Inflar los globos y atarlos  al riel superior  a diferentes distancias.
-Frotar las varilla de plástico sobre el paño de algodón y acercarla a cada globo, medir la distancia a la cual se atraen o se separan.
- Frotar las varilla de vidrio sobre el paño de algodón y acercarla a cada globo, medir la distancia a la cual se atraen o se separan.
OBSERVACIONES:

Globos
Distancia de repulsión
Distancia de atraccion
Varilla de plástico y tipo de carga
5cm, tipo de carga negativa

Varilla de vidrio y tipo de carga

12cm , Carga positiva


Simulador de cargas eléctricas:
http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields_es.html -
UNIDAD 5: FENÓMENOS ELECTROMAGNÉTICOS (40 h)
Equipo
5.1 Definir Carga eléctrica.
5.2 Formas para   Detectar la Conservación de la carga.
5.3? Cuales son las  Formas de electrización y detección?
1
La carga eléctrica es una propiedad de la materia que se traduce o que provoca que los cuerpos se atraigan o se repelen (se rechacen) entre sí en función a la aparición de campos electromagnéticos generados por las mismas cargas.
Cuando un cuerpo cargado eléctricamente se pone en contacto con otro inicialmente neutro, puede transmitirle sus propiedades eléctricas. Este tipo de electrización denominada por contacto se caracteriza porque es permanente y se produce tras un reparto de carga eléctrica que se efectúa en una proporción que depende de la geometría de los cuerpos y de su composición. Existe, no obstante, la posibilidad de electrizar un cuerpo neutro mediante otro cargado sin ponerlo en contacto con él. Se trata, en este caso, de una electrización a distancia o por inducción o influencia. Si el cuerpo cargado lo está positivamente la parte del cuerpo neutro más próximo se cargará con electricidad negativa y la opuesta con electricidad positiva. La formación de estas dos regiones o polos de características eléctricas opuestas hace que a la electrización por influencia se la denomine también polarización eléctrica.
Electrización por frotamiento
Electrización por contacto
Electrización por inducción
2
la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas
Conservación de la carga está el principio esocarga eléctrica se cree ni se destruye la poder ni. La cantidad de carga eléctrica está siempre conservado.
En la práctica, la conservación de la carga es una ley física que los estados que el cambio neto en la cantidad de carga eléctrica en un volumen específico de espacio es exactamente igual a la cantidad neta de carga que fluye en el volumen menos la cantidad de carga que fluye del volumen. Esencialmente, la conservación de la carga es una relación de la contabilidad entre la cantidad de carga en una región y el flujo de la carga en y de esa misma región.

Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado.

La electrización es uno de los fenómenos que estudia la electrostática Para explicar como se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra (no electrizada), tiene el mismo número des cargas positivas y negativas.

Algunos átomos tienen más facilidad para perder sus electrones que otros. Si un material tiende a perder algunos de sus electrones cuando entra en contacto con otro, se dice que es más positivo en la serie Triboeléctrica. Si un material tiende a capturar electrones cuando entra en contacto con otro material, dicho material es más negativo en la serie triboeléctrica.
3
En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia deelectrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticasentre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética
Conservación de la carga está el principio eso carga eléctrica se cree ni se destruye la poder ni. La cantidad de carga eléctrica está siempre conservado.
En la práctica, la conservación de la carga es una ley física que los estados que el cambio neto en la cantidad de carga eléctrica en un volumen específico de espacio es exactamente igual a la cantidad neta de carga que fluye en el volumen menos la cantidad de carga que fluye del volumen. Esencialmente, la conservación de la carga es una relación de la contabilidad entre la cantidad de carga en una región y el flujo de la carga en y de esa misma región.
J
La esencia de la electricidad es la carga eléctrica. Esta cualidad existe en dos clases distintas, que se denominan cargas positivas y negativas. Las cargas eléctricas de la misma clase o signo se repelen mutuamente y las de signo distinto se atraen. 
En realidad, la carga eléctrica de un cuerpo u objeto es la suma de las cargas de cada uno de sus constituyentes mínimos: moléculas, átomos y partículas elementales.

La electrización de un cuerpo se consigue extrayendo del mismo las cargas de un signo y dejando en él las de signo contrario. En tal caso, el cuerpo adquiere una carga eléctrica neta no nula. ♥☻
4
En física, la carga eléctrica es una propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas. La materia cargada eléctricamente es influida por los campos electromagnéticos siendo, a su vez, generadora de ellos. La interacción entre carga y campo eléctrico origina una de las cuatro interacciones fundamentales: la interacción electromagnética.

Todo objeto cuyo número de electrones sea distinto al de protones tiene carga eléctrica. Si tiene más electrones que protones la carga es negativa. Si tiene menos electrones que protones, la carga es positiva.
Los electrones no se crean ni se
destruyen, sino que simplemente se transfieren de un material a otro. Cuando un cuerpo es electrizado por otro, la cantidad de electricidad que recibe uno de los cuerpos es igual a la que cede el otro. La carga se conserva. En todo proceso, ya sea en gran escala o en el nivel atómico y nuclear, se aplica el concepto de conservación de la carga. Jamás se ha observado caso alguno de creación o destrucción de carga neta. La conservación de la carga es una de las piedras angulares de la física, a la par con la conservación de la energía de la cantidad de movimiento.
Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado. 
La electrización es uno de los fenómenos que estudia la electrostática.

A.- Electrización por contacto
Se puede cargar un cuerpo con sólo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si toco un cuerpo neutro con otro con carga positiva, el primero también queda con carga positiva.
B.- Electrización por frotamiento
Al frotar dos cuerpos eléctricamente neutros (número de electrones = número de protones), ambos se cargan, uno con carga positiva y el otro con carga negativa.
Si frotas una barra de vidrio con un paño de seda, hay un traspaso de electrones del vidrio a la seda.
Si frotas un lápiz de pasta con un paño de lana, hay un traspaso de electrones del paño a al lápiz.
C.- Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.
En términos de movimiento de electrones, cuando...
A.- Un objeto con carga positiva se conecta a tierra:
Existe un flujo de electrones de tierra hasta la carga, carga neutra.
B.- Una esfera con carga negativa se pone en contacto con una neutra:
Existe un flujo de electrones de la carga hacia tierra.
C.- Una barra con carga positiva se acerca a una placa metálica neutra y aislada:
Se atraen los cuerpos.

5
La esencia de la electricidad es la carga eléctrica
.En concordancia con los resultados experimentales, el
principio de conservación de la carga
establece que no hay destrucción ni creación neta de carga eléctrica, y afirma que en todo proceso electromagnético la carga total de un sistema aislado
se conserva
A.- Electrización por contacto
Se puede cargar un cuerpo con sólo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si toco un cuerpo neutro con otro con carga positiva, el primero también queda con carga positiva.

B.- Electrización por frotamiento
Al frotar dos cuerpos eléctricamente neutros (número de electrones = número de protones), ambos se cargan, uno con carga positiva y el otro con carga negativa.
Si frotas una barra de vidrio con un paño de seda, hay un traspaso de electrones del vidrio a la seda.
Si frotas un lápiz de pasta con un paño de lana, hay un traspaso de electrones del paño a al lápiz.

C.- Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.
6
Propiedad intrínseca de algunas partículas subatómicas (pérdida o ganancia de electrones) que se manifiesta mediante atracciones y repulsiones que determinan las interacciones electromagnéticas entre ellas.
Todo objeto cuyo número de electrones sea distinto al de protones tiene carga eléctrica. Si tiene más electrones que protones la carga es negativa. Si tiene menos electrones que protones, la carga es positiva.
Los electrones no se crean ni se destruyen , sino que simplemente se transfieren de un material a otro. Cuando un cuerpo es electrizado por otro, la cantidad de electricidad que recibe uno de los cuerpos es igual a la que cede el otro. La carga se conserva. En todo proceso, ya sea en gran escala o en el nivel atómico y nuclear, se aplica el concepto de conservación de la carga. Jamás se ha observado caso alguno de creación o destrucción de carga neta. La conservación de la carga es una de las piedras angulares de la física, a la par con la conservación de la energía de la cantidad de movimiento.
Todo objeto con carga eléctrica tiene un exceso o una deficiencia de cierto número entero de electrones: los electrones no se pueden dividir en fracciones. Esto significa que la carga del objeto es un múltiplo entero de la carga del electrón. El objeto no puede poseer una carga igual a 1.5 o a 1000.5 electrones, por ejemplo. Todos los objetos cargados que se han observado hasta ahora tiene una carga que es un múltiplo entero de la carga de un solo electrón.
Cuando a un cuerpo se le dota de propiedades eléctricas, es decir, adquiere cargas eléctricas, se dice que ha sido electrizado.

La electrización es uno de los fenómenos que estudia la electrostática.

Para explicar como se origina la electricidad estática, hemos de considerar que la materia está hecha de átomos, y los átomos de partículas cargadas, un núcleo rodeado de una nube de electrones. Normalmente, la materia es neutra (no electrizada), tiene el mismo número des cargas positivas y negativas. A.- Electrización por contacto
Se puede cargar un cuerpo con sólo tocarlo con otro previamente cargado. En este caso, ambos quedan con el mismo tipo de carga, es decir, si toco un cuerpo neutro con otro con carga positiva, el primero también queda con carga positiva.

B.- Electrización por frotamiento
Al frotar dos cuerpos eléctricamente neutros (número de electrones = número de protones), ambos se cargan, uno con carga positiva y el otro con carga negativa.
Si frotas una barra de vidrio con un paño de seda, hay un traspaso de electrones del vidrio a la seda.
Si frotas un lápiz de pasta con un paño de lana, hay un traspaso de electrones del paño a al lápiz.

C.- Electrización por inducción
Un cuerpo cargado eléctricamente puede atraer a otro cuerpo que está neutro. Cuando acercamos un cuerpo electrizado a un cuerpo neutro, se establece una interacción eléctrica entre las cargas del primero y el cuerpo neutro.
Como resultado de esta relación, la redistribución inicial se ve alterada: las cargas con signo opuesto a la carga del cuerpo electrizado se acercan a éste.
En este proceso de redistribución de cargas, la carga neta inicial no ha variado en el cuerpo neutro, pero en algunas zonas está cargado positivamente y en otras negativamente
Decimos entonces que aparecen cargas eléctricas inducidas. Entonces el cuerpo electrizado induce una carga con signo contrario en el cuerpo neutro y por lo tanto lo atrae.


Material: Sauco, varillas de vidrio, ebonita, globos, aparato de Wimshurt, Van der Graaf.piel de conejo, globo, LATA VACIA DE ALUMINIO, PLATO DE UNICEL.
PROCEDIMIENTO:
-          A.- Colocar las esferas de sauco con el hilo  pendientes del riel, frotar la varilla de ebonita con la piel de conejo y acercar a la esfera de sauco, repetir con la varilla de vidrio. Anotar las observaciones.
-          B.- Inflar el globo y con el hilo colgarlo de la barra, aceRcaR  la varilla de vidrio frotada con la piel de conejo y después acercarla a la esfera de sauco, anotar los cambios observados.
-          C.- Accionar la palanca giratoria del aparato de Winshurt hasta la generación de cargas eléctricas, acercar a las esferas  unas pelusas de la piel del conejo y observar los cambios.
-          D.- Frotar el plato de unicel con la piel de conejo y acercarla a la lata de aluminio colocada sobre la mesa. Anotar los cambiOS observados.
-          F.- Conectar el aparato de Vander Graf a la coriente eléctrica y acerca los platos de unicel, posteriormente colocar en la parte superior los platos de unicel y accionar el aparato de vander graf.
-          OBSERVACIONES:  EQUIPO 4
A
Observamos q la varilla de vidrio tenia poca carga eléctrica por lo q la atracción de la esfera hacia dicha varilla fue poca en cambio la varilla de ebonita   tubo mayor atracción electraca.
-                     B
-                     Observamos q la varilla de vidrio atraía mas rápido el globo en cambio pudimos ver q la otra varilla de ebonita  la repele  también pudimos ver q nosotros atraíamos al globo .
-                     C
-                     Observamos  q  el aparato de winshurt  se creaba una línea en la cual  corria electricidad atraía el pelo de conejo y se accionava por energia mecánica q se convertía en eléctrica
-                     D
-                     Observamos q el plato de unicel sin frotarlo en la piel de conejo  no atraía la lata de aluminio en cambio frotándolo si se atraían.
-                     E
-                     no se pudo realizar.
Corriente electrica
La corriente o intensidad eléctrica es el flujo de carga por unidad de tiempo que recorre un material. Se debe a un movimiento de los electrones en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, lo que se aprovecha en el electroimán.
El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

Bibliografía:  http://es.wikipedia.org/wiki/Corriente_el%C3%A9ctrica
Energía Potencial en el campo electrico

Considérese una carga puntual q en presencia de un campo eléctrico. La carga experimentará una fuerza eléctrica.
\vec F=q \vec E \,\!
Ahora bien, si se pretende mantener la partícula en equilibrio, o desplazarla a velocidad constante, se requiere de una fuerza que contrarreste el efecto de la generada por el campo eléctrico. Esta fuerza deberá tener la misma magnitud que la primera, pero sentido contrario, es decir:
{\vec F}_a=-q \vec E \,\!(1)
Trabajo3.PNG
Partiendo de la definición clásica de trabajo, en este caso se realizará un trabajo para trasladar la carga de un punto a otro.De tal forma que al producirse un pequeño desplazamiento dl se generará un trabajo dW. Es importante resaltar que el trabajo será positivo o negativo dependiendo de cómo se realice el desplazamiento en relación con la fuerza {\vec F}_a \,\!. El trabajo queda, entonces, expresado como:
dW={\vec F}_a \cdot d \vec{l}= F_a \, dl\cos (\theta) \,\!
Nótese que en el caso de que la fuerza no esté en la dirección del desplazamiento, sólo se debe multiplicar su componente en la dirección del movimiento.
Será considerado trabajo positivo el realizado por un agente externo al sistema carga-campo que ocasione un cambio de posición y negativo aquél que realice el campo.
Teniendo en cuenta la expresión (1):
dW=\vec F_a \cdot d \vec l = q \vec E \cdot d \vec {l} \,\!
Por lo tanto, el trabajo total será:
W=\int_{A}^{B} q\vec E \cdot d \vec l \,\!
Si el trabajo que se realiza en cualquiera trayectoria cerrada es igual a cero, entonces se dice que estamos en presencia de un campo eléctrico conservativo.
Expresándolo matemáticamente:
W=\int_{A}^{A} q\vec E \cdot d \vec l=0 \,\!
Ahora bien, sea una carga q que recorre una determinada trayectoria en las inmediaciones de una carga Q tal como muestra la figura.
Trabajoelectrico.PNG
El trabajo infinitesimal es el producto escalar del vector fuerza F por el vector desplazamiento dl, tangente a la trayectoria, o sea:
\vec F \cdot d \vec l=F \, dl \cos(\theta)=F \, dr \,\!
donde dr es el desplazamiento infinitesimal de la carga q en la dirección radial.
Para calcular el trabajo total, se integra entre la posición inicial A, distante r_A \,\! del centro de fuerzas y la posición final B, distante r_B \,\! del centro fijo de fuerzas:
W=\int_{A}^{B} \frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r^2} \, dr=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_A}-\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r_B} \,\!
De lo anterior se concluye que el trabajo W no depende del camino seguido por la partícula para ir desde la posición A a la posición B. lo cual implica que la fuerza de atracción F, que ejerce la carga Q sobre la carga q es conservativa. La fórmula de la energía potencial es:
E_p=\frac {1}{4\pi{\epsilon}_0}\frac{Qq}{r} \,\!
Por definición, el nivel cero de energía potencial se ha establecido en el infinito, o sea, si y sólo si  r=\infty, \quad E_p=0 \,\!.
Bibliografia: http://es.wikipedia.org/wiki/Potencial_el%C3%A9ctrico
Potencial electrico:

El potencial eléctrico en un punto es el trabajo que debe realizar una fuerza eléctrica para mover una carga positiva q desde la referencia hasta ese punto, dividido por unidad de carga de prueba. Dicho de otra forma, es el trabajo que debe realizar una fuerza externa para traer una carga unitaria q desde la referencia hasta el punto considerado en contra de la fuerza eléctrica. Matemáticamente se expresa por:
V = \frac{W}{q} \,\!
Considérese una carga puntual de prueba positiva, la cual se puede utilizar para hacer el mapa de un campo eléctrico. Para tal carga de prueba q_0 \,\! localizada a una distancia r de una carga q, la energía potencial electrostática mutua es:
U = K\frac{ q_0 q}{r} \,\!
De manera equivalente, el potencial eléctrico es V = \frac{U}{q_0} \,\! = K\frac{q}{r} \,\!.

Potencial:

En un sistema físico, la energía potencial es energía que mide la capacidad que tiene dicho sistema para realizar un trabajo en función exclusivamente de su posición o configuración. Puede pensarse como la energía almacenada en el sistema, o como una medida del trabajo que un sistema puede entregar. Suele abreviarse con la letra \scriptstyle U o \scriptstyle E_p.
La energía potencial puede presentarse como energía potencial gravitatoria, energía potencial electrostática, y energía potencial elástica.
Más rigurosamente, la energía potencial es una magnitud escalar asociada a un campo de fuerzas (o como en elasticidad un campo tensorial de tensiones). Cuando la energía potencial está asociada a un campo de fuerzas, la diferencia entre los valores del campo en dos puntos A y B es igual al trabajo realizado por la fuerza para cualquier recorrido entre B y A.

Bibliografia: http://es.wikipedia.org/wiki/Energ%C3%ADa_potencial
Intensidad del campo electrico
Una carga positiva o negativa modifica las propiedades del espacio circundante creando a su alrededor un campo eléctrico que se pone de manifiesto por un efecto de atracción o de repulsión sobre una carga de prueba colocada en el campo. De acuerdo con esto, si en un punto O del espacio una carga puntual fija + q que se llama carga fuente y, dentro del campo eléctrico de esta carga colocada en un punto P , situado a la distancia r, una carga puntual + qo, que se llama carga de prueba , sobre ésta actuará una fuerza eléctrica repulsiva e.
La fuerza que la carga fuente + q ejerce sobre la carga de prueba + qo situada en un punto determinado del campo es directamente proporcional a esta carga. Es decir a qo.
En consecuencia, en un punto determinado de un campo eléctrico el cociente /qo es constante. Esta constante se designa por y se llama intensidad del campo eléctrico en el punto. Se tiene entonces que: .
En general:
La intensidad del campo eléctrico en un punto es una magnitud vectorial que se mide por el cociente entre la fuerza que ejerce el campo sobre una carga de prueba positiva + qo, colocada en el punto y el valor de dicha carga.
Campo eléctrico

El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica. Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica \vec F dada por la siguiente ecuación:
\vec F = q \vec E
En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es Newton partido de culombio (N/C), voltio partido de metro (V/m) o, en unidades básicas, kg·m·s−3·A−1.


Bibliografia: http://es.wikipedia.org/wiki/Campo_el%C3%A9ctrico